Calarasi, 2011

1. Let ABCM be a quadrilateral and D be an interior point such that
ABCD is a parallelogram. It is known that ZAMB = ZCM D. Prove that
IMAD = /ZMCD.

Solution. Construct parallelogram ABEM. Then ZAMB = ZM BFE and,
since CDME is a parallelogram, /DMC = Z/MCE. This leads to /M BE =
ZMCUFE, so the quadrilateral MBCE is cyclic. This yields /ZBCM = Z/BEM
= /BAM, whence the conclusion.

2. Let S be a set of positive integer numbers such that
min {lem (z,y) 1 z,y € S,z #y} > 2+ max S.

Show that

> 1/z < 3/2.
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Solution. The condition in the statement implies that there exists a

positive integer n which is a strict upper bound for S and a strict lower
bound for the set of the least common multiples of distinct numbers in S.
If z is a member of S, let M, denote the set of positive multiples of x that
do not exceed n. Clearly, |M;| = |n/z|. If x and y are distinct members of
S, then M, and M, are disjoint, for the least common multiple of z and y
is greater than n. Consequently,

Sln/z) =3 M| <n
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and |S| < |n/2| (otherwise, some number in S would divide another, by a
well-known result of Erdés). Finally,

nY 1/z—n/2<nY 1z —|8=) (n/z—1) <) |n/z] <n,
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whence the conclusion.



3. Determine all positive integer numbers n satisfying the following
condition: the sum of the squares of any n prime numbers greater than 3 is
divisible by n.

Solution. We begin by showing that if a positive integer k is relatively
prime to n, then k? = 1 (mod n). To this end, invoke the Dirichlet theorem
on arithmetic sequences to choose n — 1 primes congruent to 1 modulo n
and a prime congruent to k modulo n. The sum of the squares of these n
primes is congruent to k2 — 1 modulo n, so k? = 1 (mod n).

Next, we prove that n has no prime divisors greater than 3. Let p be an
odd divisor of n and write n = p®*m, where a and m are positive integers
and p does not divide m. By the Chinese Remainder Theorem, there exists
a positive integer k such that £ = 1 (mod m) and k£ = 2 (mod p). It is easily
seen that k& and n are coprime, so k> = 1 (mod n) by the preceding. Hence
k%2 =1 (mod p), and the condition k = 2 (mod p) forces p = 3.

Consequently, n = 2%37 where a and /3 are non-negative integers. Since
5 and n are coprime, the latter must be a divisor of 52 — 1 = 24. It is readily
checked that all divisors of 24 work.

4. Given a positive integer number n, determine the maximum number
of edges a triangle-free Hamiltonian simple graph on n vertices may have.

Solution. The required maximum is |n/2]? if n is even and |n/2]% + 1
if n is odd.

By Turén’s theorem, the maximum number of edges a triangle-free sim-
ple graph on n vertices may have is |n/2] |(n 4+ 1)/2] and is achieved only
by the complete graph K|, 2| |(n4+1)/2)- 1f n is even, the latter is also Hamil-
tonian and we are done.

Consider the case n = 2m + 1, where m is an integer number greater
than 1. Let G be a triangle-free Hamiltonian simple graph on n vertices
with a maximum number of edges. Since G is Hamiltonian and has an odd
number of vertices, it has an odd cycle, so it must have a shortest odd cycle,
say C, of length 2k + 1, where k is an integer number greater than 1. No
additional edges forming diagonals in C' may exist without creating a shorter
odd cycle. Each of the 2m — 2k vertices outside C' may be joined to at most
two vertices of C, for any choice of more vertices of C would yield a shorter
odd cycle. Finally, with reference again to Turan’s theorem, the 2m — 2k
vertices outside C' may induce at most (m — k)? edges without forming any
triangles. Consequently, G has at most

(2k + 1) +2(2m — 2k) + (m — k)?

edges. The largest possible value occurs when k = 2 and is m? + 1. Many
Hamiltonian graphs achieve this bound. One of them, H,, is constructed
from K, by inserting a vertex of degree 2 on any one edge.



